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Abstract. In solving large sparse linear least squares problems Ax = b, several different numeric methods
involve computing the same upper triangular factor R of A. It is of interest to be able to compute the
nonzero structure of R, given only the structure of 4. The solution to this problem comes from the
theory of matchings in bipartite graphs. The structure of 4 is modeled with a bipartite graph, and it is
shown how the rows and columns of 4 can be rearranged into a structure from which the structure of
its upper triangular factor can be correctly computed. Also, a new method for solving sparse least
squares problems, called block back-substitution, is presented. This method assures that no unnecessary
space is allocated for fill, and that no unnecessary space is needed for intermediate fill.
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1. Introduction
Consider solving a system of linear equations

Ax = b,

where A4 is an m x n, m = n, large, sparse matrix. In the following we always assume
that 4 has full column rank. When A is rectangular, the system is overdetermined,
and we seek the least squares solution—that is, the solution that minimizes

I Ax = b 2.

There are several different methods for finding this solution [19]. We take a brief
look at two of them, orthogonalization and the normal equations methods.
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In orthogonalization we factor A4 into

1=l

where Q is an m x m orthogonal matrix, and R is an n x n upper triangular matrix,
and then solve the upper triangular system

<g>x = Q.

Numerically, we can compute Q and R using Householder reflections [15] or
Givens rotations.

With the normal equations approach, we multiply by AT and solve the square
system

ATAx = A™.

If A is of full rank, then A"A4 is symmetric and positive definite, and we can factor
ATA into its Cholesky factors LLT.
From the following equations, and the uniqueness of L,

LL" = A"4A = (QR)"(QR) = R"R,

we see that LT is equal to R except for possible sign differences in some rows.
Hence, in both of the methods described above we seek to compute the same upper
triangular matrix R. Since we are dealing with large, sparse systems, it is desirable
to be able to determine the nonzero structure of R, working only from the structure
of A. In the following we describe two different methods that have been suggested,
and we show that both can overestimate the number of nonzeros in R.

The first method we look at is based on the numeric method of factoring 4 by
Givens rotations. We call it the Local Givens Rule.

One Givens rotation is usually thought to result in fill (i.e., the creation of new
nonzerps) as shown in Figure 1.

" Su éw | is used as a pivot row to zero the entry in column c of row j. The
tule for determining the fill says that entry (j, ¢) becomes zero, entry
by onzero, and in the other columns we take the union of the nonzeros
for both rows. In our example, the result would be as shown in Figure 2.

However, as Gentleman [10] pointed out, the Local Givens Rule as a way of
computing the fill is not fully correct and might predict too much fill. We illustrate
this in the example in Figure 3. In this example the triangularization is in reality
completed after Step 3, because both nonzeros in the last row will be zeroed
simultaneously in Step 3. The Local Givens Rule does not take this into account
and we might predict a fill of Q(n?), although the actual fill is only O(1), and the
matrix should remain sparse.
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The second method we look at is the George-Heath algorithm [11]. These
authors use the normal equations to predict the structure of R and then do the
numeric computation by orthogonalization. The first (structural) phase of the
algorithm can be described as follows:

(1) Starting with the structure of 4, compute the structure of 474.
(2) From the structure of 474, compute the structure of L™—using a symbolic
Gaussian elimination algorithm.

George and Heath proved that the structure that results from the algorithm
above will have room for all the nonzeros of R.

LEMMA 1.1 [11]. The structure of R as predicted by symbolic factorization of
ATA D the structure of R as predicted by the Local Givens Rule 2 the structure
of R.

COROLLARY 1.2. If the structure of R = the structure predicted by symbolic
factorization of A”A, then the structure of R = the structure predicted by the Local
Givens Rule.

However, this method also may be too generous in allocating space for nonzeros
in R, as is shown in the example in Figure 4. Here A is already in upper triangular
form, so R = A. But, since 4 has one full row, A"A4 is full and R is predicted to be
full. (By Lemma 1.1, symbolic factorization will also be too generous with the
example in Figure 3.)

We have thus seen that both of the previously suggested methods for computing
the structure of R may predict too much fill. It should be emphasized that for both
of the methods described above the occurrence of this “bogus fill” is purely a
consequence of the nonzero structure of the matrix, and does not depend on the
actual numeric values of the nonzero entries.
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Instead of coming up with a new rule for computing fill, we have asked the
following questions: First, can we exhibit a class of matrix structures for which
symbolic factorization of 4”4 gives the correct result? Second, can we reorder the
columns and rows of 4 so that the Local Givens Rule is guaranteed to give the
correct result when applied to this rearranged matrix? We answer these questions
in the affirmative.

Since the nonzero structure of a matrix is a combinatoric rather than a numeric
property, it is convenient to represent this structure by a graph—in our case a
bipartite graph—and to model the operations performed on the matrix with
operations performed on the vertices and edges of the graph. In Section 2 of this
paper we give some basic graph-theoretic definitions, and introduce a structural
concept called the strong Hall property. In Section 3 we analyze the computation
of the structure of R using symbolic factorization of A™4, and show that this gives
the correct result if 4 has the strong Hall property. This fact can be exploited to
provide an algorithm for computing the structure of R using the Local Givens Rule
for an arbitrary matrix A4 (appropriately reordered), as is shown in Section 4. We
also give an algorithm for solving the original system of equations without using
the whole structure of R. Finally, Section 5 contains a summary of our results.

2. Definitions and Notation

2.1 BasIiC GRAPH-THEORETIC NOTATION. An undirected graph, G = (V, E),
consists of a set V of vertices and a set E of edges. An edge (v, w) is an unordered
pair of distinct vertices. If (v, w) is an edge, the vertices v and w are adjacent. The
edge (v, w) is incident on vertices v and w, which are its endpoints. The degree of a
vertex, written deg(v), is the number of edges incident on v. Given a vertex v, the
set I'(v) = {x:(v, x) € E} is called the adjacency set of v. Similarly, for a set of
vertices, X C V, we say that I'(X) = {y:(x, y) € E for some x € X} is the adjacency
set of X.

A matching in a graph G is a set of edges, F C E, such that no two edges in F
have an endpoint in common. A vertex that is the endpoint of some edge in F is
covered; otherwise, it is exposed. If every vertex is covered by F, then F is a perfect
matching.

A path between v and w in G is a sequence of distinct edges (vo, v1), (vi, V2), . . .,
(Vk—1, V), where v = vo and w = v, and all the vertices are distinct except possibly
vo = V. If F is a matching in G, an alternating path is a path in which every other
edgeisin F.

A subgraph G’ = (V', E’), of G = (V, E) is a graph where V' C Vand E’ C E.
If V/ = V, then G’ is a spanning subgraph. The set of edges of G with both
endpoints in V"’ is written as E(V’). If E’ = E(V"'), then G’ is the subgraph of G
induced by the vertex set V'.

For an n x n symmetric matrix 4 that has only nonzeros on its diagonal, we can
use an undirected graph G(4) to represent the zero/nonzero structure of A. The
graph G(A) has n vertices and (v;, v;) is an edge if and only if 4; # 0. The changes
in the structure of 4 during Gaussian elimination can be modeled as a process
working on the graph: when column i is zeroed out in the matrix, we mark v; “old”
and add enough new edges to turn all of vs unmarked neighbors into a complete
graph. The final result of this process is called the filled graph, G*, and we refer to
this process as symbolic Gaussian elimination. The following characterization of
fill, in terms of an undirected graph, is very useful.
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LeMMA 2.1 [24]. The edge (v, w) is an edge in the filled graph G* if and only if
there is a path in G from v to w going only through vertices marked earlier than
both v and w.

2.2  BIPARTITE GRAPHS AND THE HALL PROPERTY. An undirected graph whose
vertex set can be divided into two disjoint sets V; and V>, such that every edge in
E has one endpoint in V; and the other in V5, is called a bipartite graph. This
graph is sometimes written H = (V, V>, E) to stress the partition of V.

Let H = (V, W, E) be a bipartite graph with | V| = | W|. If, for every set of
vertices X C W, X is adjacent to at least | X| vertices in V, then we say that the
bipartite graph H has the Hall property. If every proper subset X is adjacent to
more than | X | vertices, we say that H has the strong Hall property; or, for more
precise definitions:

Definition 2.2. A bipartite graph H = (V, W, E) with | V| = | W| has the Hall
property if

VXC W:|T(X)| = | X|.

Definition 2.3. A bipartite graph H = (V, W, E) with | V| = | W| has the strong
Hall property if

VXCW, X#£#0:|T(X)| = | X]|.
We list some basic and useful facts about matchings in bipartite graphs.

LEMMA 2.4 [17). Let H = (V, W, E) be a bipartite graph. There is a matching
in H of cardinality | W | if and only if H has the Hall property.

COROLLARY 2.5. Let H = (V, W, E) be a bipartite graph with | V| = | W|.
Then H has a perfect matching if and only if H has the Hall property.

A directed graph D = (V, F) is a graph whose edges are ordered pairs of distinct
vertices, (v;, v;) called arcs. A directed path from v to w in D is a sequence of
distinct arcs {vo, V1), {Vi, V2), ..., {Vk—1, Vx), Where v = vo and w = v, and all the
vertices are distinct except possibly v, = v,. If for every two vertices v and w in D
there is a directed path from v to w, then D is strongly connected.

With any directed graph D of n vertices we can associate a bipartite graph H), as
follows: Hp = (X, Y, E), with | X| = | Y| = n, and (x;, ;) is an edge in E if (v;, v;)
is an arc in F. In addition, all the edges (x;, y;) for ] =i < nare in E.

The following observation, due to Johnson et al. [22], is also proved in {21].

LEMMA 2.6 [22]. D is strongly connected if and only if Hp has the strong Hall
property.

Note that this correspondence between the strong Hall property and strong
connectedness is well defined only when the bipartite graph is “square,” that is,
when it has the same number of vertices in each part. Indeed, it is possible for a
rectangular bipartite graph that has the strong Hall property not to be connected,
as in Figure 5. However, every bipartite graph has a-.canonical decomposition into

subgraphs with the strong Hall property. This topic is pursued further in
Section 4.

2.3 REPRESENTING THE STRUCTURE OF A MATRIX WITH A BIPARTITE GRAPH.
Let A be an m x n real matrix, with m = n, and full column rank. We represent
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the zero/nonzero structure of 4 with a graph H(4). H = (V, W, E) is a bipartite
graph with V' ={v,, ..., vu}, W= {wy, ..., w,}, and (v, w;) € E if and only if
A;; # 0. We refer to the vertices of W as column vertices, and to the vertices of V
as row vertices. Note that since 4 has full column rank, H has a matching that
covers all the column vertices.

Given any two sets W, W, C W of column vertices, we can define a new
bipartite graph H' = (X, Y, S) where | X| = | W, |, | Y| = | W2|,and (x;, ;) € S
if and only if w; € W, and w; € W, and w; € TI'(T'(w;)). We write this as H’ =
&(H, W,, W,). See Figure 6 for an example.

If U, is the matrix containing only the columns of 4 represented by W, and U,
is the matrix containing the columns of W5, then H’ = H(UTU>), provided that
no two columns that have some nonzeros in the same rows are orthogonal. This is
true, for example, if all the entries are nonnegative. In particular, under this
assumption ®(H(A), W, W) = H(ATA).

By N(A) we denote the set of m x n real matrices B such that B; = 0 if 4; = 0.

For a matrix A, we define the structural rank of A to be the size of a maximum
matching in H(A4). The numeric rank of A is the number of linearly independent
columns of 4. The structural rank of A is at least as large as its numeric rank.
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To make it easier to remember all this notation, we summarize it in the following
table.

Symbol Denotes

G=(V,E) Undirected graph

H=((V,W,E) Bipartite graph

D=(V,F) Directed graph

I(X) Adjacency set of X

SH, W, W) Product graph

(H,r,p,q) The special product graph ®(H, W,, W,) where W, =
wi, ..., wj U {wy}and Wy = {wy, ..., w,} U {w,}
(see Section 3.2)

Aor M Matrix

M= (A,r1Dp,q) Special submatrix of 4*4 (See Section 3.1)

N(A) Matrices whose structure fits into A4’s structure

H(A) Bipartite graph that represents the structure of A

3. Correct Prediction of Fill

Let an be a numeric algorithm that takes an m x n matrix 4 as input and produces
a matrix R as output; and let as be a corresponding structural algorithm that takes
a structure H, as input and outputs a structure Hg. We say that as correctly models
ay (or simply that as is correct) if the following two conditions hold. For all
matrices A,

(1) H(R) € Hg, and
(2) there is a matrix A" € N(A4) such that H(R’) = Hp-.

We assume throughout that 4 has full column rank. Then A"A4 is positive
definite, and Cholesky factorization can be computed using Gaussian elimination
with pivots from the main diagonal. There are well-known and efficient algorithms
for determining the structure of the matrix that results from Gaussian elimination
[12]. However, any such algorithm produces the correct structure only under the
assumption that no cancellation occurs during the Gaussian elimination.

It is worthwhile at this point to say what we mean by cancellation. Gaussian
elimination (for our purposes) is an algorithm that zeros the subdiagonal elements
of one column at a time, meanwhile replacing some of the elements in other
columns to its right. Cancellation occurs when a nonzero is replaced by a zero
outside the column being eliminated.

There are two kinds of cancellation. Lucky cancellation is cancellation that
occurs only for certain values of the nonzeros in the given matrix. We shall
disregard lucky cancellation because it cannot be predicted from the structure
alone. Essential cancellation occurs no matter what the nonzero values are.

Brayton et al. [2] show that if the structure of a square matrix M with nonzero
diagonal is given, then there is no essential cancellation when it is factored by
Gaussian elimination. (In their terminology, Gaussian elimination is a “minimal
algorithm™ for such matrices. They point out that Gaussian elimination is not
necessarily a minimal algorithm for matrices with zeros on the diagonal.) It follows
that, for the class of positive definite matrices, symbolic factorization correctly
models Gaussian elimination. Here, however, we begin not with the structure of
A"A, the matrix whose Cholesky factor we want, but with the structure of 4. The
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entries of 474 are not independent: the structure of A may be such that cancellation
will occur when we do Gaussian elimination on 474, regardless of the values of
the nonzeros in A. This essential cancellation is the reason why symbolic factori-
zation of ATA may predict too much fill. In the following we show that, provided
A has the strong Hall property, no essential cancellation will occur when we
perform Gaussian elimination on 4"4. From this we can conclude that symbolic
factorization of 474 gives the correct result for matrices that have the strong Hall
property.

Our way to the main theorem of this section is via three important lemmas. The
first of these lemmas says that we need only consider certain special submatrices
of ATA. The second lemma talks about bipartite graphs, and shows how we can
use the strong Hall property to make sure that each special submatrix has the
property we desire. The third lemma tells us that it is enough to look at just one
special submatrix at a time, rather than all of them simultaneously.

3.1 A SpeCIAL SORT OF SUBMATRIX. The following lemma shows that if
cancellation occurs at position (p, ¢) in A4 during Gaussian elimination, then
this position is in the lower right-hand corner of a singular submatrix of 4*4 of a
special form described below.

Consider the square matrix M consisting of the principal r x r submatrix of 474,
plus the first r entries of row p and column g, plus entry (p, g), where 1 = r<p =
g < n. See Figure 7. As a shorthand notation we write M = {4, r, p, q).

LEMMA 3.1. If cancellation occurs in A™A at entry (p, q) during the rth stage of
the Gaussian elimination, where row r is used to zero out entry (p, r), then
M = (A, r, p, q) has full structural rank and is singular.

PrOOF. To show that M has full structural rank, let C = H(M) be the bipartite
graph that represents the structure of M, and let H = (X, Y, S) = H (ATA) be the
bipartite graph that represents the structure of 474. Clearly, C is a subgraph of H.

Since A"A4 is a symmetric matrix with a nonzero diagonal, F = {(x;, 1), ...,
(x4, yn)} is a perfect matching in H. By Lemma 2.1 it then follows that position
(p, q) in A™A fills in if and only if there is an alternating path in H from vertex x,
to vertex y, going only through lower numbered vertices. Hence, if we have
cancellation at position (p, g), such a path exists, and, by interchanging the matching



Predicting Fill for Sparse Orthogonal Factorization 525

and nonmatching edges of this path, we can construct a perfect matching in C.
Any vertex x; that does not lie on the alternating path will be matched with y;.

To see that M is singular, note that performing Gaussian elimination on a square
matrix does not change the value of its determinant; and since the resulting matrix
is upper triangular and has one diagonal entry equal to zero, it must be singular. O

3.2 A STRUCTURAL LEMMA. In this section we show that if A’s bipartite graph
has the strong Hall property, then we can make any one of the special submatrices
of A*A nonsingular by choosing appropriate values for the nonzeros of 4.

As before, H = (V, W, E) is a bipartite graph with the strong Hall property. Let
Wy={w,...,wjU{w}and W, = {w,, ..., w,j U {w,. Let C = ®(H, W,, W,).
We also use the shorthand notation C = (H, r, p, q) for this graph.

Now, we are given the structure of a matrix, that is, a bipartite graph H. We
want to show that provided that H has the strong Hall property, we can find a
matrix 4 that fits into the given structure, and is such that for each subgraph
C = (H, r, p, q) that has a perfect matching, the corresponding submatrix M =
(A, r, p, q) is nonsingular. If we can show this, then by Lemma 3.1 we can say
that there will be no essential cancellation during Gaussian elimination in 47A4.

We shall take on a somewhat easier task, though, namely, showing that for any
single subgraph C = (H, r, p, q) that has a perfect matching, we can find a matrix
A that fits into H and has M = (4, r, p, q) nonsingular.

Each nonzero term in the determinant of a square matrix corresponds to a
different perfect matching in its bipartite graph. Hence, if C has exactly one perfect
matching, then the determinant is nonzero—that is, M is nonsingular. On the
other hand, if C has no perfect matching at all, this means that all terms in the
determinant of M are zero, and the matrix is singular.

LeMMA 3.2. Let H = (V, W, E) be a bipartite graph, and let W, and W, be
subsets of W such that | Wi | = | W, | =k, and | W, N W, | = k — 1. If H has the
strong Hall property and if C = ®(H, W\, W>) has a perfect matching, then there is
a spanning subgraph H of H such that C = ®H, W\, Ws) has exactly one perfect
matching.

PrROOF. Let C= (S, T, U), with S=1{s;,...,sx}and T = {t;, ..., tx}. It is
convenient to distinguish between two cases:

Casel. |W,N W,| =k, thatis, W, = W,. Let H, = (V, W,, E). Since H,
has the Hall property, we know there is a matching F, in H, that covers ;. Let

= (V, W, F)). It is easy to see that any vertex s; in C is adjacent only to .
Therefore C has precisely one perfect matching, namely, {(s1, t1), . . ., (S, )}

Case 2. |W, N W,| = k — 1, that is, there is a vertex w, € W, such that
w, & W>, and a vertex w, € W, such that w, & W,. Without loss of generality, we
may assume that W, = {wy, ..., we } U {wp}, Wo = {w,, ..., wx — 1} U {w,}. For
the proof of this second case, we need two more lemmas.

The following lemma is due to Ford and Fulkerson.

LeMMA 3.3 [9, Corollary 10.9). Let H, = (V, W), E\) and H, = (V, W, E,) be
two bipartite graphs with one vertex set in common, and | W, | = | W, | = k. There
is a set P C V of k vertices, with a matching F, in H, covering P, and a matching
F, in H, also covering P, if and only if

VXC W, VYC Wy:|X| + | Y| =k + |T(X) N T(Y)]. (1)
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LEMMA 34. Let H = (V, W\, EVU W))) and H, = (V, W,, E(VU W))). If
C = ®(H, W,, W>) has a perfect matching, then there is a maiching F, in H,

and a matching F, in H,, both of cardinality k and both covering the same set
V' CV, where|V'| =k.

PrOOF. By Lemma 3.3, it is enough to show that condition (1) holds for H,
and H,.

Let XC Wyand Y C W,. If | X| + | Y| < k, then the inequality in (1) is
immediate. Assume that | X| + | Y| = k + 6, where 6 = 1. We must prove that
ITX)NT(Y)| =6.Let Z=XNY. Clearly, I'(Z) C I'(X) N T'(Y).

Since X and Y are chosen from sets of size k that have k — 1 elements in
common, we can conclude that | Z| = 6 — 1. We consider separately the cases
Z=Qand Z#O.

If Z = @, then 6 = 1. Let I'c(X) denote the adjacency set of X in the graph C.
By assumption C has a perfect matching, which by Corollary 2.5 implies that
| Te(X) | = | T(T(X)) N W3] = | X]|. Since T'e(X) C W, and

ITcX) |+ | Y| = |X|+|Y|=k+1,

I'c(X) and Y must have at least one vertex in common. That is, there must be at
least one vertex w € Y such that w € I'(X), and thus

ITX)NT(Y)| =1=6.

Next, assume that Z # &. By the strong Hall property |[T(Z)| > |Z| =6 — 1.
Then

ITX)NT(Y)| = | T(Z)] = é.

We have thus shown that condition (1) is satisfied, and Lemma 3.4 now follows
from Lemma 3.3. 0O

We continue case 2 of the proof of Lemma 3.2.

Among the matchings F, in H, and F, in H, that satisfy the conclusion
of Lemma 3.4, choose that pair F;, F, that maximizes | F; N F,|. Let H =
(V, W, F, U F,) be the graph with the vertices of the original graph H and theedges
of the two matchings F; and F,. We show that C = ®(H, W,, W) has exactly one
perfect matching. In fact, we see that C consists of a path of odd length plus some
isolated edges. A

First note that every vertex in H has degree at most 2, and that deg(w,) = deg(w,)
= 1, since w, and w, are only covered by one matching each.

Let s; be any vertex in C. If deg(w;) = 1 and i # p and i # g, then w; was matched
to the same vertex v; in both F, and F>. This implies that deg(v;) = 1 in H and that
(si, t:;) is the only edge incident on s; and also the only edge incident on ¢;, in C. In
other words, s; can be matched with exactly one other vertex, ;.

If deg(w;) = 1 and i = p, so that s; corresponds to w,, then some edge ¢, =
(Wp, V) is in F,. Some other edge e, = (v, ws) must be in F,. Thus, s; in C is
adjacent to exactly one vertex, namely, ;. It follows that (s;, Z5) must be a matching
edge in C. )

If we delete e, and e, from H, then we can repeat the argument above, beginning
at wg, to find another edge that must be in the matching on C. This procedure will
continue until deg(zs) = 1. Since the only other vertex of degree 1 that we have not
dealt with is w,, this will happen precisely when we reach w,.
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Finally, if deg(w;) = 2, and if w; is not on the path between w, and w,, then
w; must lie on a cycle in H. The cycle edges alternate between F, and F,.
We can increase |F, N F,| by putting every other cycle edge into both F,
and F,. This contradicts the assumption that the matchings were chosen to
maximize | F; N Fy|.

This completes the proof that there is only one perfect matching in C. O

3.3 MEASURE THEORY. Lemma 3.2 in the previous section implies that if the
graph (H, r, p, q) has a perfect matching, then the special submatrix (4, r, p, q)
of ATA is made nonsingular by some assignment of values to A—that is, by some
A’ € N(A). In this section we show that there is a single assignment of values to A
that makes all these special submatrices nonsingular at once.

LeEMMA 3.5. Let A be a matrix with t nonzeros, where in place of each nonzero
we have put a variable, x,, x2, . . . , x,. Let M\, M, . . ., My be submatrices of ATA.
Suppose that, for each i with | < i < k, there is an assignment of values a® =
@®, a, ..., a”) to the nonzero entries of A such that M; is nonsingular. Then
there is a single assignment a = (a,, ..., a,;) such that every M;, 1 =i <k, is
nonsingular.

Proor. Each det(Mf)) is a nonzero polynomial p;(x) with integer coefficients.
The zeros of such a polynomial form a set of measure zero [8]. Since there are only
k such polynomials the set S = U; {x:p;(x) = 0} is also of measure zero. Hence,
there must exist a point a & S; so p;(a) #0 foralli. O

3.4 MAIN THEOREM. With all the necessary lemmas in hand, we are ready for
the main theorem of this section.

THEOREM 3.6. Let A be an m x n matrix, m = n, with the strong Hall property,
and an orthogonal factorization A = QR. The following algorithm will correctly
compute the nonzero structure of the upper triangular factor R.

(1) Determine the structure of A"A.
(2) Apply symbolic Gaussian elimination to the structure of A”A, yielding the
structure of R.

PrOOF. Recall the two conditions at the beginning of Section 3 that are required
for a structural algorithm to be called correct.

The first of these conditions, that H(R) C Hpg, is just Lemma 1.1, and was
proved by George and Heath [11].

For the second condition, that there exist a matrix 4’ € N(A) such that
H(R') = Hg-, recall that symbolic factorization of A™4 gives an incorrect result
when the symbolic Gaussian elimination does not produce the same structure as
that from the actual Gaussian elimination. Furthermore, this happens when
cancellation occurs during the actual Gaussian elimination. Hence, we want to
show that there is a matrix B € N(A) in which no <cancellation occurs during
Gaussian elimination in B'B. By Lemma 3.1, it is enough if we can show that
there is a matrix A’ € N(A) such that for each subgraph C = (H, r, p, q) that has
a perfect matching, M = (A4’, r, p, g) is nonsingular.

LetC=(H,r,p q), 1 =r<p=gq=< n, be asubgraph of H that has a perfect
matching. By Lemma 3.2, for every such C there is a subgraph H’ of H, such that
C’' = (H', r, p, q) has precisely one perfect matching.
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Form A’ by setting Aj = 1 if (w;, w)) is an edge in H’, and setting 4} = 0,
otherwise. Clearly, A" € N(4), and M’ = (A’, r, p, q) is nonsingular—since
C = H(M’), and hence its determinant has exactly one nonzero term.

Thus, for each subgraph C = (H, r, p, g) with a perfect matching, there is a
matrix A” € N(A4) such that M’ = (A4’, r, p, q) is nonsingular. Finally, by
Lemma 3.5, we conclude that there is one matrix, B, such that for all subgraphs
C = (H, r, p, q) with a perfect matching, M = (B, r, p, q) is nonsingular. For this
matrix B, no essential cancellation will occur during Gaussian elimination in B"B,
and the theorem follows. [0

4. Finding the Structure of R

Section 3 showed us that, provided A4 has the strong Hall property, we can determine
the structure of R correctly with symbolic factorization of ATA4. But what if we
want to use the Local Givens Rule? Or, most important, what can we do when 4
does not have the strong Hall property? We answer these questions below. First,
note that the Local Givens Rule also works correctly on matrices with the strong
Hall property:

THEOREM 4.1. Let A be an m x n matrix, m = n, with the strong Hall property.
If we compute the nonzero structure of R by doing symbolic Givens rotations using
the Local Givens Rule, then the result is correct.

PrROOF. Follows directly from Theorem 3.6 and Corollary 1.2. O

In the general case—when the structure of A does not necessarily have the strong
Hall property—we can permute 4 into parts, each of which has the desired property.
This canonical reordering scheme was first studied by Dulmage and Mendelsohn
[5-7, 22].

The reordering we want is what is known as “block upper triangular form”
[16]. It is a permutation of the columns and rows of A4 that leaves square submatrices
on the diagonal, and a rectangular submatrix in the lower right-hand corner. See
Figure 8.

As we pointed out in Section 2, the strong Hall property is closely related to the
strong connectedness of a directed graph. In particular, if 4 is a square matrix, we
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can do our reordering by finding the strongly connected components in the directed
graph that corresponds to 4 [16, 25]:

(1) Find a perfect matching in 4 and, with this matching fixed, construct the
directed graph D(A).
(2) Find the strongly connected components of D in topological order.

Regardless of which perfect matching we choose in Step 1, Step 2 will give the
same row partition and the same column partition.

If 4 is not square, we can proceed as follows. First, find a matching in A4 that
covers all the columns. Then, the last, rectangular, component of 4 consists of
every column and row that can be reached from an uncovered row via an alternating
path. The remaining rows and columns are a square submatrix that can be reordered
into strongly connected components in topological order, as above. The rectangular
component and each of the square strongly connected components have the strong
Hall property. The rows and columns in each component are independent of which
maximum matching in 4 we use.

The time to find a maximum matching is O(t vm + n) [20, 23], where A4 has ¢
nonzeros. The rectangular component can be found by depth-first search in O(¢)
time. The strong components can also be found in O(¢) time [1, 25]. (In fact, the
same depth-first search can be used to find the rectangular component and the
strong components.) Thus, the worst-case time for the reordering is bounded by
O(t vm + n). Duff’s experiments with a heuristic maximum-matching algorithm
[4] indicate that in practice a maximum matching can often be found in O(¢) time;
in such cases, the entire reordering takes O(¢) time.

THEOREM 4.2. Let A be an m x n rectangular matrix. If we use the algorithm
above to permute A into A’, and use the Local Givens Rule on A’ to find the
structure of its factor R’, then the result is correct.

PROOF. Let M be any of the square submatrices on the diagonal. If there are
none, A itself has the strong Hall property, and the theorem follows from
Theorem 4.1.

Let c;, ..., ¢; be the columns that are in M, and let ¢, be any other column in
A’ to the right of M. If ¢, has only zeros in rows i, . . ., j, then the factoring of M
does not affect the structure of ¢, in these rows.

If ¢ has at least one nonzero in rows i, . . . , j, consider the rectangular submatrix,
U, made up from the columns ¢;, . .., ¢j-;, k. Since column ¢, has a nonzero in
row k, U has the strong Hall property. Hence, by Theorem 4.1, the Local Givens
Rule works on this matrix, and it follows that the Local Givens Rule works
correctly on the whole of 4. O

Although the result in the theorem above is interesting in its own right, it turns
out that in practice it is probably better to solve the system by “block back-
substitution”—and never compute the structure of R. This is done as follows (refer
to Figure 9 for notation):

Algorithm 4.1

(1) Reorder A as shown in Figure 9, with square diagonal blocks M,, M,, ..., M, and a
rectangular diagonal block M, ;.

(2) Solve the rectangular least-squares system M., ;X4 = brs,.

(3) Fori=k, k—1,...,1do:
Update the vector b, by setting (b, ..., b;) « (b, ..., b;) — Uis1Xi+:1. Solve the square
system M;x; = b;.
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FiG. 9. Block back-substitution.

This way of solving the system has several advantages. First, in step (2), we know
that M., has the strong Hall property, so by Theorem 4.1 we shall not use any
unnecessary space—whether we use symbolic factorization of A4 or the Local
Givens Rule. In case we use symbolic factorization of A"A4, note that the strong
Hall property is preserved under column and row permutations. This means we
can use a heuristic, like minimum degree, on the structure of 4”4 to find a column
ordering that gives small fill, and still be guaranteed that we are not allocating any
extra space for R.

Second, all the systems we solve in step (3) are square, which means that we can
use any standard algorithm to solve these and to find orderings that give little fill.
Of course, one way to solve the square system M;x; = b; is by a OR factorization
of M; [18]. If we do this, Theorem 3.6 says that symbolic factorization of 474
correctly predicts the structure of M,’s triangular factor. Symbolic factorization of
A" A can also be useful when solving M;x; = b; by Gaussian elimination with partial
pivoting, as shown by George and Ng [13].

Third, by updating the vector b every time we have determined new values for
some variables in x, we avoid having to store any fill at all in U, the part of A4
above the diagonal blocks.

5. Summary

We have described the nonzero structure of matrices and singled out a class of
structures, namely, those with the strong Hall property. For matrices with this
property, we have shown that symbolic factorization of 44 correctly predicts the
structure of the upper triangular factor R. We have also shown that this condition
is sufficient to say that the Local Givens Rule will correctly predict the structure
of R. However, in neither case is it a necessary condition: there are matrices that
do not have the strong Hall property and in which no bogus fill occurs.

We have given a way of reordering a matrix of arbitrary structure into blocks for
which symbolic factorization of A"A4 correctly predicts fill. We have outlined an
algorithm that uses this reordering to solve a least squares problem block by block,
storing no unnecessary fill within each block and storing no fill at all between
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blocks. The reordering also gives a way to permute columns so that the Local
Givens Rule will correctly predict the structure of the triangular factor of the whole
matrix.

Our analysis suggests that the fill from a Givens rotation cannot be characterized
by a local rule—that is, a rule based on the structure of only a fixed number of
rows—as opposed to Gaussian elimination. We have found it necessary to use both
a local rule—the Local Givens Rule—and a concept that summarizes the structure
of the whole matrix—the strong Hall property. On the other hand, the fill in
Gaussian elimination can be given a precise static characterization: we can predict
which positions will be filled in terms of paths in the initial structure, as in Lemma
2.1. This characterization has been a valuable theoretic tool. For this reason it
might be interesting to find a similar static characterization for Givens rotations.
George et al. explore this theme in [14].
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